

Presentation Overview

- What affects milling quality?
- Previous work
- Recent QTL studies of 3-D image analyses
- Association Mapping of Kernel Size and Milling Quality in Soft Winter Wheat Cultivars

New York Soft White Winter Wheat Varieties

Caledonia

Geneva

Cayuga

Richland

Factors affecting Milling Quality

- Proportion of Endosperm:
 - Kernel size, shape, embryo size, seed coat (bran) thickness, shriveling
- Friability and Endosperm Separation:
 - Hardness, fiber content, crease depth and width, cell wall thickness in sub aleurone
- Proportions of Major Constituents
 - Endosperm 81-83%
 - Embryo + Scutellum 2-5%
 - Pericarp + Testa + Aleurone 14-16%

Previous Reports: Traits vs. Milling Yield

- Kernel size Mixed, weak to strong relationship depending on the study
- Test weight Weak to moderate correlation
- Shape, embryo size, seed coat (bran) thickness -?
- Shriveling Significant correlation
- Hardness Not significant within class
- Crease depth and width -No apparent relationship
- Cell wall thickness in sub aleurone ?

Potential Undesirable Correlations

- Kernel Size and Shape:
 - Uniformity vs. grain yield % tertiary kernels reduced
 - Size vs. Roundness Larger kernels seem to be proportionately longer
- Reduced Embryo Size
 - Poorer emergence, seedling vigor

Recent Studies

- Breseghello, F., P.L. Finney, C. Gaines, L. Andrews, J. Tanaka, G. Penner, and M.E. Sorrells. 2005. Genetic loci related to kernel quality differences between a soft and hard wheat cultivar. Crop Sci. 45:1685-1695.
 - 9 Reed x Grandin (Soft x Hard): Three locations Canada, California, New York
- Breseghello, F., and M.E. Sorrells. 2006. Association mapping of kernel size and milling quality in wheat (*Triticum aestivum* L.) cultivars. Genetics 172:1165-1177.
 - 95/149 elite soft winter wheat cultivars from the Northeastern US: Mostly recent releases, representing 35 seed companies / institutions
 - 93 SSR loci: 33 on 2D, 20 on 5A, 9 on 5B, 31 on 16 other chromosomes
- Breseghello, F., and M.E. Sorrells. 2007. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res. In press.
 - Reed x Grandin (Soft x Hard) and Synthetic x Opata (ITMI) populations

Digital Image Analysis of Wheat Kernels

Flavio Breseghello

Grain morphology traits as targets for indirect selection for wheat milling quality in early generations

Horizontal Picture

Vertical Picture

Horizontal Picture

Vertical Picture

Volume = Spheroid based on equal-area circle
VSF = V area / area of equal-perimeter circle
Surface = Spheroid based on equal-perimeter circle
Flatness = Width / Minor axis

Surface & Volume Spheriod Scheme

QTL Comparative Plot of Seed Size and Shape

(Single marker regression)

Synthetic x Opata

Association Analysis

Methods

- Population Structure: 36 "unlinked" SSR markers TASSEL -Structure without admixture, SPAGeDi (Hardy & Vekemans) program for Kinship
- Association Analysis: *R* stats package *lme* used to analyze Linear mixed-effects model with marker as fixed effects (selected from previously identified QTL regions) and subpopulations or Kinship as random effects (no obvious differentiating characteristics)
- Jianming Yu, Gael Pressoir, et al. (2006) A Unified Mixed-Model Method for Association Mapping Accounting for Multiple Levels of Relatedness *Nature Genetics* 38:203-208

Previous QTL information

- Doubled-Haploid Population AC Reed x Grandin
 - QTL for kernel width near *Xwmc111*, *Xgwm30*, *Xgwm261* and length near *Xgwm539*
 - QTL for friability, ESI, and flour yield near *Xgwm261*, *Xgwm484*, *Xwmc181*, respectively.
- Recombinant Inbred Population Synthetic W7984 x
 Opata
 - QTL for kernel weight, area, length and width on 5A and 5B.
 - QTL on 5A for friability.
 - QTL on 5B for flour yield, ESI, friability, and Breakflour yield.

Linkage Disequilibrium: Chromosome 2D

Significant LD was below 1 cM

Loci Associated with Kernel Size & Shape (p-values corrected for multiple testing)

Chromosome 2D

Agreed with Kernel Size & Shape Shape (p-values corrected for multiple testing)

Agreed with QTL in Reed x Grandin

Kernel Size

	Locus		ght	Area		Length		Width	
cM	Name	NY	ОН	NY	ОН	NY	ОН	NY	ОН
7	Xcfd56	0.069	0.160	0.012	0.119	0.076	0.031	0.000*	0.252
11	Xwmc111	0.005	0.020	0.005	0.108	0.003'	0.107	0.000*	0.000**
23	Xgwm261	0.145	0.016	0.019	0.009	0.027	0.009	0.058	0.001*
28	Xwmc112	0.012	0.057	0.047	0.120	0.480	0.367	0.001*	0.024
64	Xgwm30	0.081	0.862	0.053	0.848	0.312	0.820	0.000**	0.212
91	Xgwm539	0.042	0.038	0.030	0.039	0.001*	0.005	0.290	0.334

Milling Quality

сM	Locus	Milling	Flour Yield	ESI	Friability	Break-Flour
23	Xgwm261	0.008	0.052	0.019	0.003*	0.523
41	<i>Xgwm484</i>	0.022	0.039	0.003*	0.130	0.886
85	Xwmc181	0.003*	0.003*	0.007	0.006	0.607

Linkage Disequilibrium: Chromosome 5A

Loci Associated with Kernel Size & Shape (p-values corrected for multiple testing) Chromosome 5A

Kernel Size

	Locus		Weight		Area		Length		Width	
	cМ	Name	NY	ОН	NY	ОН	NY	ОН	NY	ОН
ı	55	Xcfa2250	0.021	0.007	0.044	0.014	0.014	0.002*	0.637	0.649
	55	Xwmc150b	0.002*	0.003	0.003	0.005	0.009	0.002*	0.093	0.429
	56	Xbarc117	0.009	0.002*	0.021	0.005	0.118	0.022	0.044	0.039
	60	Xbarc141	0.631	0.037	0.232	0.024	0.038	0.002*	0.852	0.863

Agreed with QTL in M6 x Opata

Milling Quality

сM	Locus	Milling Score	Flour Yield	ESI	Friability	Break-Flour Yield
55	Xcfa2250	0.010	0.029	0.047	0.002*	0.081

Loci Associated with Kernel Size & Shape (p-values corrected for multiple testing) Chromosome 5B

Kernel Size

	Locus Weight		Area		Length		Width		
cM	Name	NY	ОН	NY	ОН	NY	ОН	NY	ОН
48	Xcfa2121b	0.785	0.053	0.525	0.039	0.289	0.245	0.290	0.005*
66	Xbarc89	0.651	0.110	0.791	0.118	0.518	0.159	0.003*	0.070
129	Xbarc308	0.041	0.000**	0.117	0.000**	0.461	0.001**	0.049	0.005*
134	Xbarc232	0.016	0.001**	0.005*	0.003*	0.064	0.002*	0.00	0.551

QTL in M6 x Opata

Milling Quality

сM	Locus	Milling Score	Flour Yield	ESI	Friability	Break-Flour Yield
130	Xbarc142	0.616	0.877	0.763	0.325	0.009*
134	Xbarc232	0.002*	0.005*	0.002*	0.003*	0.199

B.L.U.E. of allele effects Kernel Length

B.L.U.E. of allele effects Kernel Width

B.L.U.E of allele effects Kernel Weight

Conclusions

Linkage Disequilibrium and Association Mapping

- There is significant variation in LD across the genome and in different collections of genotypes
- Markers closely linked to QTL of interest can be identified and allelic effects quantified

Kernel Size and Shape and Milling Quality

- Length and width are not strongly correlated.
- Some QTL intervals are associated with both milling traits and kernel size and shape.
- Further studies could focus on mapping QTL for kernel size uniformity and evaluating the relationship with the proportion of primary, secondary, and tertiary kernels AND grain yield.

- M. E. Sorrells Small Grains Breeder
- •David Benscher Research Support Specialist
- •Gretchen Salm Technical Field Assistant
- •James Tanaka Technical Assistant

Cornell Small Grains Breeding and Genetics Personnel

- Post Doctorates:Jesse MunkvoldMahmoud Zeid
- Visiting Scientist Xuejun Li
- Fulbright FellowsMarc MoraguesOrnubol Chamdej
- •Grad Students
 Elliot Heffner
 Suthasinee Somyong
 Keith Williams

Acknowledgements

USDA Soft Wheat Quality Lab, Wooster, OH

Embrapa

Provided assistantship for Flavio Breseghello

 USDA Cooperative State Research, Education and Extension Service, Coordinated Agricultural Project

GrainGenes: A Database for Triticeae and Avena

Technical support: David Benscher, James Tanaka, Gretchen Salm